Nota técnica "Educar na era da Inteligência Artificial: Caminhos para a BNCC Computação"

Notícias

28.03.2022
Tempo de leitura: 5 minutos

STEM e STEAM: qual é a diferença entre esses dois movimentos educacionais?

Tanto o STEM quanto o STEAM tem como objetivo tornar o ensino de Ciências mais conectado às demandas do século XXI. Saiba mais!

Imagem mostra a ilustração de um cérebro humano visto por cima. Está dividido em duas partes, uma na cor púrpura, onde há ilustrações que representam atividades relacionadas à ciência, matemática, engenharia, e outra na cor laranja, onde há ilustrações que representam atividades relacionadas a artes e esportes.

Desde que surgiu, no início dos anos 2000, o movimento STEM education tem ganhado cada vez mais repercussão ao redor do mundo. Sobretudo, em um contexto em que o futuro do trabalho está diretamente conectado ao avanço tecnológico.

A sigla STEM (em inglês Science, Technology, Engineering and Mathematics) representa a abordagem interdisciplinar de quatro áreas do conhecimento: Ciências, Tecnologia, Engenharia e Matemática.

O principal objetivo da proposta educacional é interligar as disciplinas a partir de situações cotidianas, frequentemente por meio de projetos. Sendo assim, as atividades devem focar mais no desenvolvimento de competências do que na transmissão de conteúdos.

Embora o STEM education parta de um princípio formativo, ele não estabelece regras de implementação nas escolas. Portanto, não pode ser considerado uma metodologia, e sim um movimento educacional em constante evolução.

Os 3 princípios do STEM

1. Desenvolver uma sociedade capacitada em Ciências, Tecnologia, Engenharia e Matemática.

2. Formar alunos e professores aptos a desenvolver competências do século XXI dentro e fora do ambiente escolar.

3. Gerar uma força de pesquisa e desenvolvimento em STEM, voltada para inovação.

Fonte: The case of STEM Education (Bybee, 2013).

Como surgiu o STEM? 

A princípio, o movimento surgiu como uma alternativa ao cenário de escassez de empregos e baixo desempenho educacional nos Estados Unidos, da década de 1990. Nesse meio tempo, as tecnologias digitais começaram a se desenvolver exponencialmente, demandando profissionais capazes de implementá-las no dia a dia.

Por outro lado, pesquisas e relatórios comprovaram que poucos estudantes estadunidenses demonstravam interesse pelas áreas de STEM. Ao passo que o setor de maior crescimento do país contaria com menos mão de obra qualificada.

Então, diversas iniciativas de ensino começaram a surgir para incentivar os estudantes a seguir carreiras nas áreas relacionadas a ciências e tecnologia. Os pesquisadores da National Science Foundation chamaram o movimento de STEM education.

Mas, afinal, qual é a diferença entre STEM e STEAM? 

Em contrapartida, muitos outros especialistas passaram a questionar o objetivo tecnicista do STEM education. Ou seja, um modelo de educação voltado somente para atender as demandas do mercado de trabalho.

Além disso, a proposta inicial não contemplava nenhuma competência relacionada às Ciências Humanas. Logo, uma parte essencial do desenvolvimento de tecnologias estaria descoberta pelos currículos STEM.

Na tentativa de reverter esse cenário, alguns pesquisadores propuseram chamar o movimento de STEAM. Ao incluir a letra “A”, a ideia era representar não apenas as Artes (em inglês Arts) mas também as demais áreas das Ciências Humanas.

Nesse sentido, a diferença entre STEM e STEAM é a ampliação do sentido de Ciência e Tecnologia como produtos de um contexto social e cultural. Esse entendimento adiciona mais camadas à interdisciplinaridade proposta pelo movimento.

Nesse contexto, onde entra o professor? 

De acordo com o especialista em STEM education Gustavo Pugliese em artigo publicado pelo Porvir, “qualquer programa STEM na sala de aula começa pela formação de professores”.

Isso acontece porque uma das principais contribuições do movimento é usar metodologias ativas para trazer temas como pensamento computacional, robótica, programação, games e design para dentro da sala de aula. Por exemplo, o uso de realidade aumentada, jogos virtuais e a própria dinâmica de sala de aula invertida podem ser estratégias para trabalhar áreas STEM.

Em outras palavras, os educadores terão de estar familiarizados com as temáticas para que elas também façam sentido para os estudantes. Assim, os currículos podem acompanhar as inovações que fazem parte da realidade dos jovens do século XXI.

Ao mesmo tempo, os conceitos-base da Ciência não deixam de ser prioridade. A diferença é que os educadores atuarão como mediadores, desenhando estratégias para estimular o protagonismo dos estudantes.

Competências do STEM education para o século XXI

  • Letramento científico e digital
  • Tomada de decisão
  • Resolução de problemas
  • Comunicação
  • Colaboração
  • Criatividade
  • Análise crítica com base em evidências

STEAM: Como implementar na escola? 

Conforme mencionado anteriormente, o STEAM (Science, Technology, Engineering, Arts and Mathematics) funciona como um movimento pedagógico. Por isso, a implementação na escola vai depender dos direcionamentos do sistema educacional e das redes de ensino.

Ainda assim, é possível trabalhar a partir dessa perspectiva de diversas formas. No Brasil, as reformas curriculares representadas pela BNCC (Base Nacional Comum Curricular) e pelo Novo Ensino Médio abrem brechas para essas práticas.

Por exemplo, o foco na integração das áreas de conhecimento, no protagonismo do estudante, nas metodologias ativas e no desenvolvimento de competências e habilidades para o século XXI são características de um currículo STEAM.

Vale lembrar que a intencionalidade é o primeiro passo para uma boa implementação. Ao definir um objetivo de aprendizagem, os educadores podem buscar referências que ajudem a adaptar estratégias para o contexto de cada turma.

Cultura digital também é STEM/STEAM!  

Pensamento computacional, programação e robótica sustentável são apenas alguns dos temas contemplados pela Coleção de Tecnologias Digitais, da Fundação Telefônica Vivo. São seis cadernos voltados para a inserção da cultura digital nas escolas. Além disso, os educadores contam com ferramentas de aprendizagem que ajudam a desenvolver competências para o século XXI. Baixe gratuitamente e confira!


Outras Notícias

OCDE aponta 4 competências essenciais para o futuro do trabalho e da educação

30/01/2026

OCDE aponta 4 competências essenciais para o futuro do trabalho e da educação

Letramento, matemática, resolução de problemas e habilidades socioemocionais são competências-chave para acompanhar as transformações tecnológicas

Retrospectiva 2025: iniciativa da Fundação Telefônica Vivo fortalece a EPT em escolas públicas

23/01/2026

Retrospectiva 2025: iniciativa da Fundação Telefônica Vivo fortalece a EPT em escolas públicas

Programa Pense Grande Tech impactou milhares de estudantes do Ensino Médio e certificou mais de 700 professores em nove estados ao longo do ano

6 tendências que devem impulsionar a Educação em 2026

16/01/2026

6 tendências que devem impulsionar a Educação em 2026

Tecnologia, personalização e inclusão digital ganham força para reduzir desigualdades e ampliar o engajamento dos estudantes

Novo indicador do MEC define aprendizagens essenciais em Matemática do 2º ao 9º ano

12/01/2026

Novo indicador do MEC define aprendizagens essenciais em Matemática do 2º ao 9º ano

Nova estratégia nacional estabelece marcos importantes de aprendizagem, amplia o uso pedagógico de dados e cria condições para integrar Matemática, tecnologia e pensamento computacional na educação básica

Especialista Jo Boaler defende ensino de matemática criativo e sem “decoreba”

05/01/2026

Especialista Jo Boaler defende ensino de matemática criativo e sem “decoreba”

Pesquisadora de Stanford propõe abordagem visual e colaborativa para reduzir desigualdades e preparar alunos para a era da Inteligência Artificial

Retrospectiva 2025: Implementação da BNCC Computação é um dos destaques da Fundação Telefônica Vivo

29/12/2025

Retrospectiva 2025: Implementação da BNCC Computação é um dos destaques da Fundação Telefônica Vivo

Formações, eventos e publicações marcaram um ano de apoio às redes de ensino das escolas públicas para desenvolver competências digitais de educadores e estudantes